skip to main content


Search for: All records

Creators/Authors contains: "Michaelis, Joseph E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We aim to design robotic educational support systems that can promote socially and intellectually meaningful learning experiences for students while they complete school work outside of class. To pursue this goal, we conducted participatory design studies with 10 children (aged 10–12) to explore their design needs for robot assisted homework. We investigated children’s current ways of doing homework, the type of support they receive while doing homework, and co-designed the speech and expressiveness of a homework companion robot. Children and parents attending our design sessions explained that an emotionally expressive social robot as a homework aid can support students’ motivation and engagement, as well as their affective state. Children primarily perceived the robot as a dedicated assistant at home, capable of forming meaningful friendships, or a shared classroom learning resource. We present key design recommendations to support students’ homework experiences with a learning companion robot. 
    more » « less
    Free, publicly-accessible full text available June 19, 2024
  2. The goal of this workshop is to have interdisciplinary discussions on family-centered interaction design of technology as an extension to child-centered design. The workshop will discuss the potential benefits of a family-centered approach to design, as well as the challenges and open questions that designers may face when adopting this approach. Through discussions and interactive activities, participants will have the opportunity to discuss and share ideas on how to effectively incorporate a family-centered perspective into their own design processes. A family-centered approach to design has the potential to create more meaningful and contextual experiences for children and their families. 
    more » « less
    Free, publicly-accessible full text available June 19, 2024
  3. Educational technologies can provide students with adaptive feedback and guidance, but these systems lack personal interactions that make social and cultural connections to the student's own classroom and prior experiences. Social or companion robots have a high capacity for these types of interactions, but typically require advanced levels of expertise to program. In this study, we examined teachers use of an authoring tool to enable them to leverage their classroom-based expertise to design robot-assisted homework assignments, and explore how seeing a robot enact their designs influences their work. We found that the tool enabled the teachers to create novel social interactions for homework activities that were similar to their classroom interaction patterns. These interaction designs evolved over time and were shaped by the teacher's emerging mental model of the social robot, their concept of the students' perspective of these interactions, and a shift towards informal classroom-like interaction paradigms, thus transforming their view of what they can achieve with homework. We discuss how these findings demonstrate how the context of the activity can influence initial mental models of social activities and suggest practical guidance on designing authoring tools to best facilitate the creation of computer or robot supported social activities, such as homework. 
    more » « less
  4. null (Ed.)
    Emotion expression in human-robot interaction has been widely explored, however little is known about how such expressions should be coupled with feelings and opinions expressed by a social robot. We explored how 12 children experienced emotionally expressive social commentaries from a reading companion robot across five interaction styles that differed in their non-verbal emotional expressiveness and opinionated conversational styles (neutral, divergent, or convergent opinions). We found that, while the robot’s opinions and non-verbal emotion expressions affected children’s experiences with the robot, the speech content of the commentaries was the more prominent factor in their experience. Additionally, children differed in their perceptions of social commentary: while some expressed a sense of connection-making with the robot’s self-disclosure commentaries, others felt distracted by them or felt like the robot was off-topic. We recommend designers pay particular attention to the robot’s speech content and consider children’s individual differences in designing emotional and opinionated speech. 
    more » « less
  5. Learning sciences research has demonstrated the importance of social interactions during learning to help promote deep and meaningful understanding through a process of co- constructing knowledge, but homework reading is typically done as an isolated exercise. We have developed a social robot to provide social interactions during reading activities with middle- school children, and in this study report on how interacting with the robot affected the learning experience. Our thematic analysis describes both direct and indirect benefits from reading with the robot. We conclude with theoretical and practical implications of these results. 
    more » « less
  6. Ruis, Andrew R. ; Lee, Seung B. (Ed.)
    Rapid advances in technology also come with increased training needs for people who engineer and interact with these technologies. One such technology is collaborative robots, cobots, which are designed to be safer and easier to use than their traditional robotic counterparts. However, there have been few studies of how people use cobots and even fewer identifying what a user must know to properly set up and effectively use cobots for their manufacturing processes. In this study, we interviewed nine experts in robots and automation in manufacturing settings. We employ a quantitative ethnographic approach to gain qualitative insights into the cultural practices of robotics experts and corroborate these stories with quantitative warrants. Both quantitative and qualitative analyses revealed that experts put safety first when designing and monitoring cobot applications. This study improves our understanding of expert problem-solving in collaborative robotics, defines an expert model that can serve as a basis for the development of an authentic learning technology, and illustrates a useful method for modeling expertise in vocational settings. 
    more » « less
  7. Collaborative robots, or cobots, represent a breakthrough technology designed for high-level (e.g., collaborative) interactions between workers and robots with capabilities for flexible deployment in industries such as manufacturing. Understanding how workers and companies use and integrate cobots is important to inform the future design of cobot systems and educational technologies that facilitate effective worker-cobot interaction. Yet, little is known about typical training for collaboration and the application of cobots in manufacturing. To close this gap, we interviewed nine experts in manufacturing about their experience with cobots. Our thematic analysis revealed that, contrary to the envisioned use, experts described most cobot applications as only low-level (e.g., pressing start/stop buttons) interactions with little flexible deployment, and experts felt traditional robotics skills were needed for collaborative and flexible interaction with cobots. We conclude with design recommendations for improved future robots, including programming and interface designs, and educational technologies to support collaborative use. 
    more » « less